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Abstract: Over the past three years, we have run a series of experiments with having crowds
of people create educational content. We present a taxonomy for crowdsourcing in education
based on five elements: (1) Source (learner, instructor, crowd, etc.) (2) Pedagogical content
knowledge required (3) Effort and complexity of task (4) Domain knowledge required (5)
Amount of structure provided. We will show how this taxonomy helps guides the design of
effective crowdsourcing strategies in educational settings. 
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Introduction
There are 4,706 degree-granting institutions in the United States. An introductory course such as physics is
taken by over one million students annually. This gives 3-4 orders of magnitude repetition and inefficiency on
tasks such as creation of lectures and assessments, and 6 orders of magnitude on per-student tasks such as
grading or tutoring. International numbers are approximately an order of magnitude greater. Open educational
resources (OER) and at-scale learning organizations such as edX attempt to improve the quality of education by

reducing those inefficiencies, providing higher-quality resources than previously possible, and freeing instructor
time to allow for more time for student-instructor interaction.

Creating  evidence-based,  pedagogically  effective  resources  is  expensive.  Some  of  the  more  effective
technological resources for K-12 courses, with high-quality, evidence-based, interactive, adaptive, accessible,
internationalized, and engaging content, cost millions of dollars to create. With tens of thousands of courses
available at a university level, creating a repository of content at this level of quality would cost in the tens of
billions of dollars. As a result, over the past three years, edX has run a series of experiments around sourcing
such content from students, instructors, and crowds. Such techniques could potentially allow us to create better
course resources at much lower cost, dramatically improving quality of tertiary education. 

In the process of running these experiments, we came to several conclusions. First of all, there is a large body of
individuals willing to help with course creation – students, instructors,  and crowds. Such contributions can
dramatically  improve  the  quality  of  courses,  including  advanced  and  esoteric  ones.  Unfortunately,  many
crowdsourcing projects also failed primarily either due to lack of background of the participants, or lack of
structure  and  guidance.  In  order  to  help  understand  success  criterea,  we  have  developed  a  taxonomy for
describing such projects. The taxonomy has five axes: 

• Source: This helps understand who is creating the content. For example, across experiments, this may

have been current learners, alumni, crowds (as through Amazon Turk), and teachers. These may be
from a MOOC or residential course. Furthermore, within those groups, participants were sometimes
pre-filtered. 

• Pedagogical content knowledge: Tasks require different levels of pedagogical content knowledge, as

well as background in teaching and learning. 
• Effort  and  complexity  of  task:  Motivating  learners  to  put  in  small  amounts  of  time,  as  when

contributing a hint is different from motivating them to contribute substantial time. 
• Domain knowledge required: Many tasks, such as explaining relevance of information, or tagging

information with concepts and learning objectives, requires a high level of domain knowledge.  
• Structure provided: Crowdsourcing generally works better with a high level of guidance. 

As we will show, as the scale of classes grows, as in MOOCs, these do not necessarily limit our ability to
crowdsource content. There is a broad demographic of learners, including domain-experts and instructors (Ho,
et. al. 2015). However, sourcing content complex on a large number of axes requires more nuanced approaches
in order to be succesful. 

Successes: Learnersourcing Remediations
The simplest content to source from learners have been remediations for other learners. By the taxonomy:

1. Source: Current learners. Since there are many more learners, we only need low participation rates. 



2. PCK:  Learners fundamentally have a high level of PCK for creating remediations – they are still

aware of what is difficult about those problems.  

3. Effort: Small. Remediations are small, and relatively independent

4. Domain knowledge required: Learner-level. 

5. Structure provided: In most cases, the task of providing remediations can be highly structured and

guided. Learners can know exactly what to do. 

We had a series of experiments in sourcing remediations. All were highly successful. Building on the success of

AIQUS, a student-run Q&A forum in the Stanford AI Course, we used Askbot, an open source community

question-and-answer system in MITx 6.002x, a  MOOC on edX (Mitros,  et.  al.  2013).  Students who asked

questions would receive an answer 92% of the time, with a median response time of 12 minutes. The quality of

responses were above what instructors in a typical class would provide. The Q&A forum was also a repository

of answers to common questions. If a question has been answered, that answer is usually found rather than

having a question re-asked – students read 290 times as many threads as they created. As a result, there is a very

large number of potential contributors for any given question. For more immediate remediation, in a course in

structures, we allowed students who answered a question incorrectly and later correctly to contribute a hint for

future learners who made the same error. This allowed us to create a body of hints similar to what might be

found  in  a  commercial  system,  such  as  MasteringPhysics,  but  substantially  outclassing  such  a  system for

number of remediations (Mitros & Sun, 2014). In order to give remediations with less scaffolding, we have

experimented with allowing students to contribute links to relevant resources in a course in computer science,

which we then recommend to other students. This, too, was highly successful (Li & Mitros, 2015). 

Difficulty: High Expert-Novice Gap Content
We had a series of experiments where we tried to source content with a greater expert-novice gap from learners.

In one experiment, we took a group of residential MIT 6.002 alumni and asked them to tag problems from

6.002x with learning objectives. Students would tag on surface features, rather than on core concepts. This

replicated a well-known result in educational cognitive science – beginners are more likely to focus on surface

features (“this problem has a diode”) while experts,  on core concepts (“This problem introduces non-linear

devices”) (Chi, et. al. 1981). 

In another experiment, we provided students with a wiki, seeded with lecture outlines. We hoped students would

be  able  to  collaboratively  create  an  open  access  textbook  for  6.002x.  Students  were  able  to  contribute  –

substantially – but the result was a shared set of course notes. Again, expert-novice literature states that novices

can explain knowledge well, but are not capable of contextualizing it sufficiently to explain it in ways with lead

to high levels of transfer (Hinds & Patterson & Pfeffer. 2001). In addition, students were not provided with a

high  level  of  guidance  about  how  to  contribute  (most  contributors  were  unaware  of  our  ultimate  goal).

Unstructured crowdsourcing tends to be less successful than well-structured crowdsourcing. 

Overcoming Limitations to Crowdsource Complex Content
Creating many portions of a course requires a high level of domain expertise, PCK, technical background, and

effort. Our effort in remediations demonstrated that we could substantially shift the quality of courses with

crowdsourcing,  but  substantially  shifting  economics  requires  creation  of  complex  content  –  videos,

assessements, course texts, and similar. We tried two experiments to generate this type of complex content. 

In the first experiment (Cormier, et. al. 2014), we worked with a group of experts. We organized a course in how

to teach physics, and brought together a pool of physics educators, education researchers, technology experts,

and similar.  They were asked to create digital  course content while studying ed-tech and physics education

research. This was a small pilot (4 weeks, limited participant pool) in preparation for a larger roll-out. This

appeared to be a viable approach for a basic course, where there are thousands of instructors available. However,



technical limitations with our authoring tools prevented us from moving beyond the pilot to fully validate the

concept. 

For more esoteric university courses, there is not a large pool of potential instructors, and we must rely on

learners. We ran an experiment where we asked learners in 6.002x to create assessments for the course. This was

largely successful, but required a complex approach involving: (1) pre-selecting top alumni (2) training those

alumin in  engineering pedagogy (3) community review and feedback on resources (4) instructor review of

resources. This was a complex endeavor, but it could be fully automated if done across hundreds of courses

(Mitros, 2015).  Note that this approach is specific to a MOOC context – MOOCs have very heterogenous

student bodies, including instructors trying to learn new pedagogical techniques, experts review content, etc.

(Ho, et. al. 2015). It is likely this approach would not have worked in a traditional classroom setting without

those experts. 

Conclusions and implications
Through a series of studies in educational crowdsourcing conducted primarily in MOOCs, we found that course

quality and economics could be substantially improved through the involvement of crowds in course creation.

However, naive approaches will yield mixed results. Course content creation requires a complex and diverse

skillset, and when there is a mismatch between the expertise of participants and the expertise required, the

contributed content is likely to be of sub-par quality.

However, in such cases, less naive approaches can yield good results. As a procedure, identifying the principal

gaps is key to being able to create an effective crowdsourcing strategy (our taxonomy provides good guidance

here). From there, there are many approaches one can take to resolving those gaps. A typical MOOC might have

on the order of 10,000 active participants, including thousands of subject-matter experts, instructors, and similar.

While  only  a  minority  of  these  will  be  willing  to  contribute,  this  still  leaves  a  sufficient  pool  for  most

crowdsourcing purposes. It is also possible to fill the gaps through specific training. In most cases, participants

who are likely to contribute also appreciate the additional instruction. It is  also possible to create structure

around the task which provide guidance to how best to contribute, permit the best contributions to bubble to the

top, and gives the community means to improve contributions. Once expertise gaps are identified, it is generally

straightforward to identify which strategies are likely to be effective. 
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