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Historically, assessment in classrooms was limited to instructor grading, or problems that lend
themselves well to relatively simple automation, such as multiple-choice questions. Progress
in educational technology, combined with economies of scale, has allowed us to digitally mea-
sure student performance on authentic assessments such as engineering design problems and
free-form text answers, radically increasing the depth and the accuracy of our measurements
of what students learn, allowing us to tailor instruction to specific students needs and giving
individualized feedback for an increasing range of issues. In addition, social interactions have
increasingly moved on-line. We now have traces of a substantial portion of student-student
interactions. By integrating these and other sources of data, we have data with which we can
estimate complex skills, such as mathematical maturity, complex problem solving, and team-
work for large numbers of students. This paper looks at the potential information found in the
data we now collect, some of the challenges with making sense of that data, and some early
successes in analyzing that data. The data is complex. Actually extracting useful high-level
metrics has proven difficult. The next grand challenge in big data in education will be finding
ways to analyze complex data from heterogeneous sources to extract such measurements.
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Twenty years ago, most digital assessments consisted of
multiple choice questions and most social interactions hap-
pened in person. Data was spread out over multiple sys-
tems with no practical means of integration. Over the past
two decades, we have seen fundamental progress in edu-
cational technology, combined with broad-based adoption
of such technology at scale1. Digital assessment has in-
creasingly moved towards rich authentic assessment. Pre-
viously, widely available data for large numbers of students
principally came from standardized exams or standardized
research instruments such as the Force Concept Inventory.
These assessments are limited to a short time window, and
as a result, they either contain a large number of small prob-
lems (which are statistically significant, but generally fail to
capture skills which require more than a minute or two to
measure), or a small number of large problems (which, on a
per-student basis lack statistical significance). Today, we are
increasingly collecting data for students doing a large num-
bers of complex problems as part of their regular coursework.
For example, the first edX/MITx course2, 6.002x (Mitros et
al., 2013) was implemented entirely with authentic assess-
ment. Students completed circuit design problems (verified
through simulation), and design and analysis problems (with
answers as either equations or numbers). Since these types of
questions have a near-infinite number of possible solutions,
answers cannot be guessed. Students could attempt to submit
an answer as many times as necessary in order to completely
understand and solve a problem. The assessments were com-
plex – most weeks of the course had just four assessments,

but completing those four required 10-20 hours of work. We
see similarly rich assessments in courses such as chemistry,
biology, physics, digital electronics, and many others. Such
complex assessments, taken together across many courses,
give rich data about problem solving skills, creativity, and
mathematical maturity.

Furthermore, we now collect microscopic data about indi-
vidual student actions. We can see not only which problems
students answered correctly, but how they got there. Exten-
sive literature on expert-novice shows differences in prob-
lem solving strategy between novices and experts. For ex-
ample, experts can chunk information (Schneider, Gruber,
Gold, & Opwis, 1993) – an expert looking at an analog cir-
cuit will be able to remember that circuit, whereas a novice
will not (Egan & Schwartz, 1979). In our data sets, we can
see actions which reflect such differences. Continuing with
the example of chunking, we record how many times a stu-
dent flips between pages of a problem set, looks up equations
in a textbook, and similar activities which are proxies for ex-
pertise.

Next, social interactions are increasingly moving on-line.
As we introduce increased amounts of digital group work to

1We define at-scale learning environments as ones where thou-
sands of students share common digital resources, and where we
collect data about such use. This includes MOOCs, but also many
educational technologies predating MOOCs, as well as formats
such as SPOCs.

2Used both in a pure on-line format, as well as in a blended
format in a number of schools
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courses, we start to see traces of social activity in our logs.
We can begin to look for students who under-perform or
over-perform in group tasks, and directly measure students’
contributions to groups. We have enough data to begin to
look for specific actions and patterns that lead to good over-
all group performance, and hopefully we will be able to use
such patterns to provide feedback to students. Natural lan-
guage processing frameworks, such as the open-source edX
EASE and Discern, are still used primarily for short-answer
grading, but were designed to also apply to analysis of so-
cial activities, such as e-mails and forum posts, as well. We
believe this will begin to give insights into soft skills, writ-
ing processes (Southavilay, Yacef, Reimann, & Calvo, 2013),
communications styles, and group dynamics.

Finally, aside from just looking within individual courses,
we can perform longitudinal analysis across a student’s edu-
cational career. In most cases, a single group design project
does not provide statistically significant information. How-
ever, all of the projects over the duration of a student’s
schooling are likely to be significant. Learning analytics sys-
tems are increasingly moving in the direction of aggregating
information from multiple sources across multiple courses.
Open analytics architectures (Siemens et al., 2011) such as
edX Insights (Mitros, 2013) or Tin Can provide a common
data repository for all of a student’s digital learning activities.

However, going from data to measurement is a complex
problem. In the next few sections of this paper, we will dis-
cuss some of the challenges, as well as early successes.

Challenges – Pedagogical Design

There is substantial friction between the design for dif-
ferent educational purposes, of which, measurement is just
one. Assignments and assessments in courses have several
objectives:

• Initial and formative assessment as an ongoing
means of monitoring what students know. This al-
lows instructors and students to tailor teaching and
learning to problematic areas (Sadler, 1989).

• The principal means by which student learn new
information. In many subjects, most student learning
happens through assignments where they manipulate,
derive, or construct knowledge (Chi, 2011) – not lec-
tures, videos, or readings.

• A key components of grading. Grading itself has
multiple goals, from certifying student accomplish-
ment to providing motivation for desired student be-
haviors.

• Summative assessment of both students and
courses. Summative assessment has many goals, such
as student certification and school accreditation.

Historically, different research communities emphasized
different objectives and gave very different principles around
how good assessments ought to be constructed. For example,
the psychometrics community principally relies on metrics
such as validity and reliability. These suggest a high level of
standardization in assessments. In contrast, the physics edu-
cation research community emphasizes concepts such as the
trade-off between authentic assessment and deliberate prac-
tice (Ericsson, Krampe, & Tesch-Römer, 1993), as well as
principles such as rapid feedback, active learning, and con-
structive learning. Educational psychology (Bloom, 1984)
and gamification emphasize mastery learning (where stu-
dents eventually get all questions right).

Numerical techniques which presume that assessments are
developed designed based on principles which optimize for
measurement often fail when applied to the much broader
set of classroom assessments. There is an inherent friction
between:

• Having a sufficient number of problems for statisti-
cal significance vs. long-form assessments which al-
low students to exercise complex problem solving and
mathematical maturity.

• Measuring individual students vs. group work3.

• Standardized assessments vs. diversity in education.
The US economy benefits from a diverse workforce,
and the educational system, especially at a tertiary
level, is designed to create one. There are over ten
thousand distinct university-level courses.

• Aiming for 50% of questions correct (maximize mea-
surement) vs. 100% of concepts mastered (mastery
learning)

To give an example of how friction comes into play, the
MIT RELATE group applied item response theory (Embret-
son & Reise, 2000), a traditional psychometric technique,
to calibrate the difficulty of problems in 6.002x, the first
MITx/edX course. However, IRT presumes that problem cor-
rectness is a measure of problem difficulty. 6.002x is based
on mastery learning, and students can continue trying until
they answer a question correctly – any sufficiently dedicated
student could answer all questions correctly. To apply IRT
in this context, RELATE had to substantially adapt the tech-
nique (Champaign et al., 2014).

Challenges – Diversity and Sample Bias

Many traditional psychometric techniques rely on a rel-
atively uniform dataset generated with relatively unbiased
sampling. For example, to measure learning gains, we would

3At this point, we have overwhelming evidence that well-
structured groupwork leads to improved student outcomes.



ASSESSMENT OF COMPLEX SKILLS 3

typically run a pre-test and a post-test on the same set of stu-
dents. In most at-scale learning settings, students drop out
of classes, take different sets of classes, and indeed, the set
of classes taken often correlates with student experience in
previous classes. We see tremendous sampling bias. For ex-
ample, a poor educational resource may cause more students
to drop out, or to take a more basic class in the future. This
shifts demographics in a future assessments to a stronger stu-
dents taking weaker courses, giving a perceived gain on post-
assessment if such effects were not controlled for.

Likewise, integrating different forms of data – from peer
grading, to mastery-based assessments, to ungraded forma-
tive assessments, to participation in social forums – gives an
unprecedented level of diversity to the data. This suggests
a moves from traditional statistics increasingly into machine
learning, and calls for very different techniques from those
developed in traditional psychometrics.

Challenges – Data Size and Researcher Skillset

Traditionally, big data educational research was con-
ducted by statisticians in schools of education with tools such
as spreadsheets, and numerical packages such as R. This
worked well when data sets were reasonably small. A typ-
ical data set from a MOOC is several gigabytes. The data
at a MOOC provider is currently several terabytes. While
this is not big data in a classic sense, the skills and tools re-
quired for managing this data go far beyond those found at
many schools of education. With continuing moves towards
technologies such as teleconferencing, we expect datasets to
grow manyfold.

As a result, most data science in MOOCs has been con-
ducted in schools of computer science by researchers gener-
ally unfamiliar with literature in educational research. This
shortcoming is reflected in the quality of published results
– for example, in many cases, papers unknowingly replicat-
ing well-established decades-old results from classical edu-
cational research.

Meaningful research requires skillsets from both back-
grounds. There are few researchers with such skillsets, and
collaborations are sometimes challenging due to substan-
tial cultural differences between schools of education and
schools of computer science.

Early Successes

An early set of high-profile successes in this sort of data
integration came from systems which analyzed data across
multiple courses in order to predict student success in fu-
ture courses. This includes systems such as Purdue Course
Signals (Arnold & Pistilli, 2012), Marist Open Academic
Analytics Initiative (Lauría, Moody, Jayaprakash, Jonnala-
gadda, & Baron, 2013), and Desire2Learn Student Success
System (Essa & Ayad, 2012).

There have been early successes with system which look
at different types of data as well. For example, the first proto-
type of the edX Open-ended Response Assessment (ORA1)
system integrated:

• Self-assessment – students rate their own answers on
a rubric.

• Peer assessment – students provide grading and feed-
back for assignments submitted by other students.

• Instructor assessment – the traditional form of as-
sessment.

• AI assessment – a computer grades essays by attempt-
ing to apply criteria learned from a set of human-
graded answers.

In the theoretical formulation (Mitros & Paruchuri, 2013),
each of the four grading systems contributes a different type
and amount of information. The system routes problems to
the most appropriate set of grading techniques. An algorithm
combines responses from graders to individual rubric items
into feedback and a final score. A simplified form of this
algorithm was experimentally validated.

Conclusion

While many of the goals of an educational experience can-
not be easily measured, it is much easier to improve, control,
and understand those that can. The breadth and depth of data
now available has the potential to fundamentally transform
education.

Students and instructors are incentivized to optimize
teaching and learning to measured skills, often at the ex-
pense of more difficult-to-measure skills. While we have
seen tremendous progress in education with the spread of
measurement, limited or inaccurate assessments can actually
cause harm if relied on too much. Measurement in tradi-
tional education is tremendously resource-constrained which
severely restricts what can be measured. Standardized high-
stakes tests are typically 3-4 hours long, and must be graded
for millions of students in bulk. In most cases, such high-
stakes exams can only accurately measure some skills and
use those as proxies for more complex to measure skills.
Many completely fail to capture skills such as mathematical
maturity, critical thinking, complex problem solving, team-
work, leadership, organization, time management, and simi-
lar skills. While time constraints in traditional classroom set-
tings are somewhat more relaxed than in high-stakes exams,
instructors still often rely on proxies. For example, when
measuring communication skill, a common proxy is an es-
say – a medium relatively rare in outside of the classroom.
Instructors cannot effectively critique longer formats of com-
munications, such as e-mail threads, meetings, and similar
without extreme student:faculty ratios – computers can.
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Digital assessments have long been effective means
to liberate instructor time, particularly in blended learn-
ing settings, as well as for providing immediate forma-
tive feedback (VanLehn, 2011) (National Research Council,
2000) (Patterson, Gavrin, & Christian, 1999). Building on
this work, we are increasingly seeing a move to authentic as-
sessment, approaches where humans and machines work in
concert to quickly and accurately assess and provide feed-
back to student problems (Basu, Jacobs, & Vanderwende,
2013), where data is integrate from very diverse sources, and
where data is collected longitudinally.

With this shift, for the first time, we have data about
virtually all aspects of students skills – including complex
ones that are, ultimately, more important than simple factual
knowledge (Sternberg, 2013). We have the potential to pro-
vide new means to assess students in ways which can im-
prove the depth, frequency, and response time, potentially
dramatically expanding the scope with which students and
instructors can monitor learning, including assessment of
higher-level skills, and proving personalized feedback based
on those assessments. However, the tool for understanding
this data (edX ORA, Insights, EASE, and Discern, in our sys-
tem, and their counterparts in others) are still in their infancy.
The grand challenge in data-intensive research in education
will be finding means to extract such knowledge from the
extremely rich data sets being generated today.
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