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Abstract—Most analog low-pass filters consist of poles. Stable,
causal all-pole filters give 20dB/dec asymptotic error |1−H(s)|
in the pass band. Pole-zero filters are typically used to improve
performance around crossover, and shift error between phase
and gain, but common causal filter types still give 20dB/dec
asymptotic error in the passband. This paper describes the theory
and practice of a class of filters which can have arbitrarily good
asymptotic behavior in the passband. It presents graphical and
numerical tools for designing such filters, as well as a number of
realizable circuit topologies for robustly implementing this class
of filters. Aside from direct applications to the design of filters
with asymptotically lower passband error, understanding such
filters helps shed light on several unusual phenomena, such how
overshoot can occur in pure RC transmission lines (with driven
shielding, but no inductive elements). The paper is presented in
the context of lowpass filters, but is equally applicable to band-
pass and high-pass filters through standard transformations.

I. INTRODUCTION

Filter design is concerned with maximizing attenuation in
the stopband, while minimizing error in the passband. An
ideal filter will transmit the signal without alteration in the
passband, and attenuate the signal completely in the stop-
band. In practice, such a transfer function is impossible to
achieve – there will always be some error in the passband,
and the attenuation in the stopband will not be complete.
Many classes of approximations to this ideal have been
introduced. These approximations are generally optimal, but
differ in what metrics they optimize over. The Butterworth
filter approximation attempts to minimize amplitude error in
the passband E(s) = 1− |H(s)| (at the cost of phase error).
The Bessel filter approximation attempts to minimize phase
error, approximating a simple delay. This paper introduces
a new metric for error: absolute error E(s) = |1 − H(s)|,
and describes a family of filters which achieves asymptotically
better performance with this metric than traditional causal filter
design.

The most common analog filter types – passive RC, Butter-
worth, and Bessel filters – consist of only poles. These result in
transfer functions where the absolute error E(s) = |1−H(s)|
has a roll-off of 20dB/decade. This is fundamental to all stable,
causal all-pole filters. Such a filter has a transfer function of
the form:

H(s) =
1

1 + c1s+ c2s2 + c3s3 + ...+ cnsn
(1)

For stability, c1 6= 0, so the asymptotic behavior of the error
at the origin can be approximated as:

E(s) = |1−H(s)| ≈ |c1s| as s→ 0 (2)

The slope of E(s) near the origin sets the asymptotic
performance of the filter. I will define this as the order

of error roll-off in the passband. In the above case, this
slope is 20dB/decade, so the passband error roll-off is first
order. Standard pole-zero filter types, such as the elliptic and
Chebyshev combine poles with zeros to give faster crossover
from passband to stopband, but still only give first order
passband error roll-off. This paper discuses a class of filters
which use zeros to give better asymptotic performance in the
passband. These filters give coincident terms in the numerator
and denominator, which cancel as s → 0. The transfer
functions of such filters can be written as:

H(s) =
1 +

∑k−1
i=1 cis

i +
∑p

i=k nis
i

1 +
∑k−1

i=1 cis
i +
∑q

i=k dis
i

(3)∑
cis

i are coincident terms, while
∑
nis

i are non-coincident
numerator terms (if any), and

∑
dis

i are non-coincident
denominator terms. This results in filter with kth order error
roll-off in the passband (k ·20 dB/decade), and (q−p)th order
filter roll-off in the stop-band. Specifically, Taylor expanding
equation 3, asymptotic behavior near the origin is:

E(s) = |1−H(s)| ≈
∣∣k! (nk − dk) sk∣∣ as s→ 0 (4)

While the author has seen filters of this form accidentally
used in certain types of circuits (generally without correct anal-
ysis), the author is unaware of any comprehensive treatment of
the theory of these filters. This paper presents such a theory.
While this paper presents the theory in the context of low-
pass filters, the theory is equally applicable to other classes of
filters by the standard transformations [1].

This class of filters has several unusual properties. First
of all, filters with error roll-off in the passband of order
greater than 1 will, fundamentally, give a region where the
gain is greater than 1. This phenomenon shows up even in
purely passive RC implementations of such filters. I will call
this phenomenon pseudoovershoot. It looks very similar to
traditional overshoot on a bode amplitude plot. However, in
contrast to traditional overshoot, it may be caused either by a
resonance, or by a zero followed by a pole. In the latter case,
it will have very different properties from normal overshoot
– in particular, it does not have the same associations with
instability, and can happen in circuits composed of purely
passive RC elements. Excessive pseudoovershoot can still
cause issues – it may lead to substantial phase dispersion near
crossover resulting in long-lasting high-frequency transients
in the step response. This paper introduces and explains this
phenomenon, and provide some strategies for managing it.

The first half of the paper explores the mathematics of this
class of filters. Section III shows a simple, intuitive graphical
technique for placing poles and zeros that can be used to
generate filters with the first two terms coincident (or 40db/dec
error roll-off in the passband). Section V derives the rules
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Fig. 1. A topology for a commonly used antialiasing filter or capacitive
load driver. The topology is designed to isolate the operational amplifier from
capacitive loading at high frequencies by providing a feedback path through
C1, while acting as a buffer at low frequencies, by providing a feedback
path through R1. This circuit exhibits 40dB/dec passband error by effectively
removing the capacitive load at low frequencies using feedback through R1.
It exhibits 20dB/dec fall-off at high frequencies, by acting as a buffer (with
feedback through C1) followed by an R2C2 filter.

for the technique from section III, and shows that they are
complete – they allow us to derive all filters with second
order passband error roll-off, and all filters derived using it
have at least 40dB/dec passband roll-off. Section VI explains
a simple non-graphical technique for designing filters of this
class that leverages existing filter approximation techniques. It
also proves that filters of this class must have pseudoovershoot.
Sections VII and VIII show two types of practical active
implementations where passband error roll-off is guaranteed
by topology (and therefore is insensitive to component vari-
ation). Note that this is a departure from most classic filter
realizations which approximate ideal filters with imperfect
component values, and so are limited by component variation.
In contrast, we bound |1−H(s)| even with component errors.
Since this also places a bound on 1−|H(s)|, at sufficiently low
frequencies, it outperforms realistic implementations of filters
such as the Butterworth even on the Butterworth’s figure-of-
merit. Both topologies are constructed by modifying traditional
filter realizations, and so virtually any filter (biquad, Sallen
Key, passive, etc.) can be modified into this class of filters.
For clarity, I will demonstrate this on a very simple filter.
Section IX describes a passive RC circuit implementation.
Section X shows how the analysis applies to the design of
shielded transmission lines.

II. RELATED WORK

Filters of this form appear in a number of places. The most
common application is transmission lines with driven shields.
By driving the shield with a finite bandwidth, one effectively
removes the capacitance up to the frequency of the driven
shield. In the case of an RC transmission line, the error of the
signal on the shield scales at 20dB/decade. The error of the
signal on the main conductor, then, scales at 40dB/decade.

There is a standard topology shown in figure 1 that is com-
monly used to drive sigma-delta ADCs [2] and other capacitive
loads. This topology has 40dB/decade error in the passband.
While the first reference to this topology is lost in antiquity,
it commonly appears in app notes. At high frequencies, the
operational amplifier acts as a buffer through C1, and the
output is filtered through R2/C2. At low frequencies, feedback
through R1 effectively removes R2/C2.

A number of speaker crossover designs claim to have this
property (if implicitly). The goal is to have substantial roll-off

in the stop band (> 20dB/dec), while maintaining constant
total signal into the woofer and tweeter: HLP +HHP = 1. If
both constraints are met, the order of the error roll-off must be
greater than 1. In reality, the only cross-over network I found
which actually had this property was a simple LC voltage
divider1.

The concept of characterizing a polynomial transfer function
by a single time constant was in the early 1960s in the
development of open circuit time constants [4]. Much of the
theory of this class of filters comes from matching the time
constants of the numerator and denominator, and therefore
follows directly from their work.

We have known since the 1950s that completely passive RC
circuits could exhibit voltage gain, but this was treated as a
curiosity [5]. While several such circuits exhibited 40dB/dec
stop-band error, the authors did not appear to realize that those
circuits had additional interesting properties.

The mathematics here corresponds directly to that of control
systems with zero steady state error in response to higher-order
inputs (ramps, parabolas, etc.). Indeed, circuits synthesized as
feedback loops with multiple integrators in the feedback path
do give higher order passband error roll-off. I do not focus on
this as a synthesis technique, since for this class of systems,
avoiding conditional stability2 requires careful attention to
saturation behavior. However, the mathematics developed in
controls is directly applicable to this class of filters, and vica-
versa.

III. GRAPHICAL DESIGN TECHNIQUE

There is a simple, graphical technique for designing filters
with 40dB error roll-off in the passband. In this section, I will
explain this technique, demonstrate how to use it. In section
V, I will formally derive the rules, and show that they are
complete – every set of poles and zeros with 40dB/decade error
roll-off can be reached using the technique, and conversely,
every set of poles and zeros reached will have 40dB/decade
error roll-off in the passband.

The graphical synthesis technique consists of five, simple
graphical operations for manipulating poles and zeros without
effecting the 40db/dec roll-off of E(s) in the passband:

1) Start with a system with 40dB/decade error roll-off in the
passband (typically, the system with no poles or zeros –
H(s) = 1)

2) Add (or remove) a pole-zero pair in the same location
3) Replace a real pole or zero at frequency f with a pair

of singularities of the same type at 2f (or vica-versa).
4) Move complex conjugate pairs of singularities along

circles centered on the real axis passing through the
origin.

5) Slide singularities of the same type along the real axis,
keeping the constraint that the sum of their reciprocals
is constant.

1More sophisticated crossover networks have substantial additional con-
straints due to claimed compensation for spatial interference patterns from
the physical spread of the woofer and tweeter, which appear to have more
influence on filter design than constraints such as HLP +HHP = 1 [3].

2A conditionally stable system is one in which a reduction in loop gain
(for instance, as caused by saturation) may give rise to instability.
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Fig. 2. A graphical illustration of the procedure in section III. By rule 1,
start with H(s) = 1. By rule 2, place a pole-zero pair at 1 rad/sec. By rule 3,
split that pole into a pair of poles at 2 rad/sec. Alternatively, by rule 4, move
those poles towards the imaginary axis, or by rule 5, move those poles along
the real axis. In the bode plots, the solid line shows the frequency response
of the system |H(s)|, while the dotted line shows the frequency response of
the passband error, E(s) = |1−H(s)|.

IV. WORKED EXAMPLE

I give an example of how this is used in practice in
figure 2. This gives a filter with one zero and two poles,
giving 20dB/dec roll-off at high frequencies. If the poles are
coincident on the real axis, the zero occurs at half of the
frequency of the poles, resulting in a region with a small
amount (15%) of pseudoovershoot in the crossover region.
If less pseudoovershoot is desired, spreading the poles by
rule 5 reduces it, at the cost of a longer transition region
from pass-band to stop-band. Alternatively, if the crossover
is too slow, applying rule 4 splits the poles onto the complex
plane and moves them towards the origin, replacing pole-zero
pseudoovershoot with a greater amount of normal resonant
peaking. The complete set of possible pole placements for a
system with a single zero and two poles is shown in figure 4
(this is the minimal case – most filters will apply rules many
more times, leading to more poles and zeros).

V. DERIVATION OF RULES

Theorem: Any realizable rational transfer function can be
characterized by two, real time constants – one associated

Comparison of error with classic filters

Fig. 3. A comparison between classic filters and a simple passive filter de-
signed with the new methodology (topology from Fig. 8). This comparison pits
complex, optimized 4th order active filters (2 op-amps/8 passives) against just
four passives. The passive topology gives low pseudoovershoot (< 2dB) and
wide crossover. An active implementation could shrink the crossover region
by increasing pseudoovershoot. The Monte Carlo simulation demonstrates the
filter error rolls of at 40dB/dec even with imperfect components. In contrast,
realistic realizations of a filter like the Butterworth would only have a limited
region where 1− |H(s)| rolled off with the Butterworth’s ideal slope (note:
figure shows |1 − H(s)|, not 1 − |H(s)|). Past that point, the Butterworth
would limit to 20dB/dec, or even 0dB/dec, depending on realization. The low
apparent spread in all plots is due to the large 130dB vertical scale.

with the numerator, and one with the denominator. Those time
constants are equal to the sum of the time constants of the
individual poles or zeros. For 40dB/decade passband error
roll-off, the time constant of the numerator must equal the
time constant of the denominator.

Take a transfer function of the form:

H(s) =
1 +

∑n
i=1 cis

i

1 +
∑n

i=1 dis
i

(5)

The Taylor expansion of H(s) around the origin is:

H(s) ≈ 1 + (c1 − d1)s+ (c2 − d2 − c1d1 + d21)s
2 + ... (6)

For E(s) = |1−H(s)| to converge to 0 at the origin at
40dB/dec, c1 = d1. Define c1 as the time constant of the
numerator, and d1 as the time constant of the denominator.

For 40dB/dec passband error roll-off, it is sufficient and nec-
essary that the s term of be coincident between the numerator
and denominator of the transfer function. This term is the time
constant of the polynomial. Notice that this time constant is
additive:

(1 + αs+ ...) · (1 + βs+ ...) ≈ (1 + (α+ β)s) + ... (7)

Therefore, the time constant of a polynomial is equal to the
sum of the time constants of the zeros of that polynomial. For
40dB/dec passband error roll-off, the sum of the time constants
of the poles minus the sum of the time constants of the zeros
must equal zero. Since the imaginary parts must, by necessity,
cancel, it is sufficient to phrase this as a constraint on the real
parts of the time constants:∑

<
(

1

zi

)
=
∑
<
(

1

pi

)
(8)

Singularities may also be moved along the real axis, as long
as the time constant

∑
1
ω remains constant. Hence, rule 5
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Fig. 4. Shown is the set of pole positions for a pair of poles which give
equivalent total time constant. The pair of poles gives the same contribution
as a single pole placed at the center of the circle if they are both either on
the circle, or if they are both on the real axis with a fixed harmonic mean
equal to the position where the circle intersects the real axis.

follows. Similarly, a singularity may be split into two with the
same total time constant. Hence, rule 3 follows.

The set of points which satisfies <(τ) = c is a vertical line.
By the conformal mapping from time to frequency, the set of
points which satisfies <

(
1
ω

)
= c is defined by a circle passing

through zero and 1
c . Singularities may be moved along this

circle without effecting the overall time constant. This gives
rise to rule 4. The complete set of equivalent positions for a
pair of poles is, again, shown in figure 4.

This set of rules is complete – the rules can transform any
transfer function with 40dB/decade passband error roll-off into
H(s) = 1. Completeness can be shown by construction. First,
move all singularities onto the real axis by rule 4. Then, merge
pairs of singularities with rule 3. This leaves a single pole and
a single zero. Since the rules preserved 40dB/decade passband
error roll-off, that pole and that zero must be coincident.
Remove them by rule 2.

VI. DIRECT SYNTHESIS TECHNIQUE

Filters of this form may also be created through direct
synthesis from a chosen error function. In this methodology,
we drop the absolute value from the definition of E(s), and
use En(s) = 1 − H(s). The error function En(s) can be
any high-pass filter designed by traditional filter approximation
techniques. Then, the filter transfer function can be explicitly
calculated as H(s) = 1− En(s).

In this case, if En(s) is a kth order filter, it is easy to
show H(s) has k coincident terms. Given the passband error
function:

En(s) =

∑m
i=k dis

i

1 +
∑p

i=1 cis
i

(9)

The transfer is:

H(s) = 1−
∑

i=k dis
i

1 +
∑

i cis
i
=

1 +
∑

i cis
i −
∑

i=k dis
i

1 +
∑

i cis
i

(10)

Notice that the locations of the poles (but not zeros) is identical
between the stopband error function En(s) and the filter
transfer function H(s).

Unless the high-pass function En(s) also has coincident
terms (which is sometimes a complex design constraint),
the stopband roll-off of H(s) will only be 20dB/decade. If
this is not sufficient, filters can be cascaded to give higher-
order roll-off in the stop-band. Attenuation in the stopband is
multiplicative, while error in the passband is additive. As a
result, cascading stages improves the order of stop-band roll-
off, but maintains the same order passband error roll-off (only

adding a constant offset). Such a filter design is shown in
figure 6. Of course, pseudoovershoot typically becomes worse
with cascaded filters.

The direct synthesis methodology directly and intuitively
shows why this class of filters must have pseudoovershoot –
whenever 90◦ < 6 En(s) < 270◦, En(s) will sum construc-
tively with the signal, giving |H(s)| > 1. Since, by definition,
En(s) is a high-pass filter with >20dB roll-off and unity gain
at high frequencies, if En(s) is minimum phase, the filter
must pass through a region where the phase enters this range.
We can use traditional filter design techniques to minimize
the frequency range of this region, minimize the amplitude of
En(s) in this region, but without right half plane singularities,
we fundamentally cannot avoid it.

The core advantage of direct synthesis is that it allows the
designer to leverage traditional filter approximations, such as
the Butterworth [6], as well as directly apply more recent com-
putational optimization techniques, such as vector fitting [7].

VII. FILTERED SIGNAL GROUND TOPOLOGY

This section describes a technique for cascading conven-
tional low-pass filters to give an active topology for imple-
menting filters with higher order error roll-off in the passband.
The circuit guarantees coincident terms by topology, indepen-
dent of component values or component matching. By this
technique, any pair of active, low-pass filters H1(s) and H2(s),
with nth order and mth order error roll-off in the passband
can be converted into a single filter with (n+m)th order error
roll-off in the passband.

Since voltages are differential, any circuit implementation of
a filter transfer function H1(s) is implicitly ground-referenced:
Vout(s) = VinH1(s)+Vref (1−H1(s)) where Vref is typically
circuit ground. By replacing ground with a node that, at low
frequencies, follows Vin, we can create filters with greater
attenuation in the passband. Let Vref = H2(s)Vin. Then,

Vout = VinH1(s) +H2(s)Vin(1−H1(s)) (11)

Then,

H(S) =
Vout
Vin

= H1(s) +H2(s)−H1(s)H2(s) (12)

Let the Taylor approximation around DC of the transfer
functions be H1(s) ≈ 1+csn+ ... and H2(s) ≈ 1+dsm+ ....
Then:

H(S) =
Vout
Vin

= 1 + (c+ d)sn+m + ... (13)

We can cascade an arbitrary number of filters this way to
generate arbitrarily good passband error roll-off. The high-
pass behavior is dominated by the lowest-order filter. A sample
filter of this type is shown in figure 5.

VIII. INVERSE HIGHPASS TOPOLOGY

As implied in section VI, a second way to design this class
of filters is by subtracting the output of a highpass filter from
the signal. As with the previous topologies, the passband error
roll-off is independent of component values. The stopband
behavior, however, is dependent on gain match between the
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Fig. 5. A cascade of two low-pass filters designed to give 40db/decade
passband error roll-off. Here, Vref follows the signal at low-frequencies. Vout

is filtered relative to Vref , and so has asymptotically better performance in
the pass-band.

Fig. 6. A lowpass filter consisting of a cascade of 1−HHP (s).

signal and the highpassed signal, as well as on the CMRR of
the subtractor. A block diagram of this is shown in figure 6.
A sample circuit is shown in 7.

IX. PASSIVE IMPLEMENTATION

Figure 8 shows a passive RC circuit topology of a filter
which guarantees 40dB roll-off in both in the stopband and of
the passband error. This circuit is simulated in figure 3. For
simplicity, I present the case where all resistors are equal and
all capacitors are equal. In this case, the transfer function is3:

H(s) =
1 + 8RCs

1 + 8RCs+ 8R2C2s2 +R3C3s3
(14)

Although the circuit is purely passive, as shown in section VI,
this filter still has a small amount of voltage gain at crossover
(0.84dB) (indeed, this circuit topology was first introduced
in [5]). A grid of this form can be scaled arbitrarily in
either direction. Scaling the circuit in the horizontal direction
increases stop-band roll-off (giving nth order roll-off, where

3As a point of curiosity, in all cases where the number of columns equals
the number of rows, the denominator of the transfer function appears to be
a symmetric polynomial. I could not prove this result, but I was able to
demonstrate it for this topology up to the case of 5× 5.

Fig. 7. A lowpass filter with 40dB/dec passband error roll-off, and 20dB/dec
stopband roll-off. Passing the signal through multiple such filters would give
better stopband roll-off, while maintaining 40dB/dec passband error roll-
off. The passband error roll-off is insensitive to component values, but the
stopband behavior is limited by the CMRR of the difference amplifier.

Fig. 8. A passive filter topology that gives 40dB attenuation in the stopband,
and 40dB error attenuation in the passband.

TABLE I
NORMALIZED RISE TIME TO A STEP INPUT FOR AN RC LINE WITH 0, 1, 2,
OR 3 SHIELDS. IN THE FIRST CASE, THE SIMULATION ASSUMES CONSTANT

CAPACITANCE BETWEEN TRACES. IN THE SECOND, IT ASSUMES
CONSTANT TOTAL CAPACITANCE TO OUTER SHIELD.

# Shields 0 1 2 3
70% Rise (C constant) 1 0.31 0.15 0.090
70% Rise (C scaled) 1. 0.61 0.45 0.36
100% Rise (C constant) ∞ 0.60 0.28 0.16
100% Rise (C scaled) ∞ 1.20 0.83 0.65
Overshoot 0 9.6% 12.8% 14.2%

n is the number of horizontal stages). Scaling the circuit in
the vertical direction improves passband error roll-off (giving
mth order roll-off, where m is the number of vertical stages).
Similar circuits could also be constructed as LC or RLC filters.

X. DISTRIBUTED TRANSMISSION LINE

The circuit in section IX scales to distributed implementa-
tion, and so offers some insight into to the design and analysis
of transmission lines with driven shields. If we extend the
filter from section IX horizontally, for a 20dB roll-off case,
we are left with an RC transmission line. With 40dB roll-
off, we are left with an RC transmission line with a driven
shield. With 60dB roll-off, we are left with a transmission
line with two driven shields. We can immediately see that
even a simple, unloaded RC transmission line with a driven
shield must have a small amount of overshoot, even with no
inductance. Using a finite approximation of the transmission
line of 50 RC segments, the overshoot (as well as rise time)
of such a transmission line is shown in figure I. The analysis
for driven LC or RLC transmission lines is similar.

XI. CONCLUSION

This paper presented a class of filters that can give arbitrarily
good response in the passband, as well as practical techniques
for both designing and implementing such filters. Under rea-
sonable assumptions, this class of filters must have a region
of gain greater than one near crossover, even with completely
passive RC implementations. A key downside of this class of
filters is the relatively wide crossover region. As a result, they
lend themselves well to applications where the stopband is far
from the passband, such as before an oversampling ADC.

REFERENCES

[1] R.W. Daniels. Frequency transformations, pages 86–107. McGraw-Hill,
New York, 1974.

[2] ADS1271 data sheet, October 2007.
[3] S. Linkwitz. Active crossover networks for noncoincident drivers. Journal

of the Audio Engineering Society, 24(1):2–8, 1976.
[4] R.D. Thornton, C.L. Searle, D.O. Pederson, R.B. Adler, and E.J. Angelo.

Multistage Transistor Circuits. Wiley, New York, 1965.
[5] H Epstein. Synthesis of passive rc networks with gains greater than unity.

Proceedings of the IRE, 39(7):833–835, july 1951.
[6] S Butterworth. On the theory of filter amplifiers. Wireless Engineer,

7(6):536–541, 1930.
[7] Bjorn Gustavsen and Adam Semlyen. Rational approximation of fre-

quency domain responses by vector fitting. Power Delivery, IEEE
Transactions on, 14(3):1052–1061, 1999.


