Learnersourced Recommendations for Remediation

Shang-Wen “Daniel” Li
MIT, Cambridge, MA
swli@mit.edu

Abstract—Rapid remediation of student misconceptions and
knowledge gaps is one of the most effective ways to help students
learn [1]. We present a system for recommending additional
resources, such as videos, reading materials, and web pages
for students working through on-line course materials. This
can provide remediations of knowledge gaps involving complex
concepts. The system relies on learners suggesting resources
which helped them, leveraging economies of scale as found in
MOOCs and similar at-scale settings in order to build a rich
body of remediations. The system allows for remediation of much
deeper knowledge gaps than in prior work on remediation in
MOOCs. We validated the system through a deployment in an
introductory computer science MOOC. We found it lead to more
in-depth remediation than prior strategies.

I. INTRODUCTION

In learning at scale systems (e.g. MOOCs, shared SPOCs,
etc.) resources are created once, instead of thousands of times,
allowing for better quality at lower total cost. Still, even one-
time creation of high-quality resources and implementation
of evidence-based pedagogies is expensive, especially moving
into the diversity of courses offered at university level. For
example, intelligent tutoring systems (ITSs) have shown that
keeping students in a state of engagement between boredom
and confusion (known as constructive struggle[12] or flow[2])
can have a substantial positive impact on learning[13]. Unfor-
tunately, such systems are cost-prohibitive to implement at a
scale of thousands of courses. We believe crowdsourcing from
learners is an economical and practical solution to create tools
for remediation.

Previous crowdsourced work focused on the creation of
remediations for common incorrect student answers [10]. For
example, students who arrived at an incorrect answer and
later a correct answer could submit a remediation which
would be seen by future students who made the same mis-
take. This is similar to several industry ITS systems such
as MasteringPhysics, but at much lower content creation
costs. Besides, both experts and novices have well-researched
limitations[6][5][11]. By combining both expert and novice
contributions, such framework can provide remediations with
much greater breadth and make for more effective teaching
and learning.

While helpful, this is limited in the scope of problems it can
be applied to, since it requires students to arrive at an answer
before providing a remediation. In classroom observations of
STEM courses, most students get stuck before reaching an
answer. This limits the domain of applicability to relatively
narrow, simple questions. Complex questions, such as design
projects, or even multiconcept physics questions, would fall
outside of the scope such systems.

Piotr Mitros
edX, Cambridge, MA
pmitros @edx.org

Students also have access to forums. Forums act as both
a place students can ask questions, and a repository of reme-
diations to common student misconceptions[9]. There are still
several gaps, key of which is that students learn better when
first given the opportunity to struggle, and solve problems with
the minimum level of scaffolding required to succeed[7]. Most
MOOC forum posts target specific errors, and provide more
scaffolding than desired for a first intervention.

In this paper, we describe a system which provides students
with a list of remediation resources in the form of pre-existing
web pages. By limiting resources to pre-existing web pages, we
limit remediations to broad ones, such as explaining relevant
concepts, rather than ones focused on a specific bug. Students
are given a set of tools for jointly managing these resources,
and can suggest new resources, edit descriptions of those
resources, up/down voting resources, and flagging spam and
abuse. This system allows stuck students to self-navigate to
remediations which can provide additional information.

We deployed this system on the edX platform as an XBlock
in a MOOC in introductory computer science, making this one
of the largest deployments of an educational recommender
system to-date. Students effectively contributed a body of
resources, and those resources, indeed, had more depth than
traditional MOOC forums. We did not conduct a randomized
control trail, so measuring the effect of these resources on
student learning remains future work.

II. SYSTEM OVERVIEW, DESIGN AND RESULTS

Fig. 1 gives an overview of the user interface, which is
designed to leverage existing user knowledge by building on
affordances from established platforms, such as reddit, as well
as portions of the edX platform. We tested the Recommender
in an eight-week computer science MOOC offered on edX
(6.00.1x Introduction to Computer Science and Programming
Using Python” from the Massachusetts Institute of Technol-
ogy). This course has weekly problem sets. Every problem
set has an overarching theme or narrative. We attached a
Recommender to each page of a problem set.

Since the goal of the Recommender is to provide inter-
ventions with more depth and less scaffolding than forums
or simple hinting systems, to evaluate its effectiveness, we
manually tagged all of the recommended resources, as well
as 100 discussion forum threads sampled at random into one
of four categories: 1) Shallow: understanding the text of
the problem, programming language syntax, terminology, error
messages, simple debugging, etc., 2) Medium: understanding
the concepts required to solve the problem, summarizing, and
processing the ideas learned in problem, 3) Deep: extending
on the materials taught in the course (e.g., suggesting a better

ALPHABETICAL SUBSTRING
Question b ° ‘
in pset™ " Inwhich the etes occur In alphabetclorder.Fo example,
o stpna s+ bean

im

i 29 String count with overlapping occurrences ‘e Staff-endorsed
List of String count with overlapping occurrences
resource
resources -
4 string split function

Edit resources

oo
~ Flag problematic
Up and down resources

vote

Add new resource >>

2 >

Resource title Add resources

Resource
summary

 Python » Documentaton » The Python Standard Library » 7. Sting Servicosprovious | next | modules | index

Table Of Contents 7.2. re — Regular expression

operations

Resource

thumbnail This module provides regular expression matching operations similar to

those found in Perl. Both patterns and strings to be searched can be Unicode
P| strings as well s 8-bitstrings.

Fig. 1. An overview of the Recommender, the crowdsourcing point-of-need
help system described in this paper. The system is typically placed below a
problem in a homework assignment, and displays a list of links to resources.
Each resource includes a title, and several means for resources manipulation.
Below the resource list, there is a description of that resource shown on mouse-
over. Typically, this consists of text explaining what the resource is and when
and how it might be helpful, optionally together with an image, such as a
screenshot. Students have tools to upvote and downvote resources, and to flag
inappropriate resources. Staff have additional controls to remove bad resources
and endorse especially helpful ones. In addition, there are controls for creating
new resources, and for browsing through multiple pages.

technique for solving a problem than that presented in the
course), and 4) Other: forum conversation, off-topic, etc.
The results, shown in Fig. 2, showed that forums and the
Recommender system were complementary. Learners recom-
mended general, high-level resources, such as pointers to
documentation, libraries, and blog posts which expanded on
the content in the course, in some cases, allowing more elegant
solutions to the problems. In contrast, forums provided high
quality remediations for debugging specific simple issues, such
as understanding problem text or basic debugging.

70 Depth of remediations for forums vs. recommender

Bl Recommender
Bl Rec (no PS1)
Bl Forums

[Forums (no PS1)

shallow medium deep other
Depth of remediation

Fig. 2. Depth of remediations from forums vs. from the Recommender,
classified as described in the text. We report results with and without the
first problem set, where results were skewed by a problem which involves
installing the development tools. This problem received a disproportionately
large number of recommendations, and biased the results.

III. CONCLUSION

In this paper, we showed a way in which students could
collaborate around improving resources for remediation. The
course had 13,225 active students in the run where we per-
formed most of our analysis, and we saw 102 contributed
resources over 7 problem sets, and sufficient voting activity to
organize those resources. 23% of the students who accessed

the problem set also accessed the Recommender. Qualitatively,
students contributed useful resources for virtually all of the
places the Recommender was used where there were relevant
resources. Unsurprisingly, we found several places, such as
simple one-step problems, where recommended resources were
not relevant, and indeed, students did not contribute resources
at all. We were encouraged by these results. The Recommender
is a remediation system targeted at students who need addi-
tional help, with a goal of maximizing quality (rather than
number) of contributions.

The results also support our thesis that successful remedia-
tion of a range of student issues requires a range of techniques,
depending on the type of issue. The Recommender is helpful
for complex activities, such as design problems, and comple-
ments other remediations techniques, such as community Q+A
and simple hinting, which are helpful in simpler contexts.

As next steps, we are working to integrate better on-ramps
and discoverability into the system. It seems likely that clear
guidance, instruction, and advertising could improve usage and
contribution levels. In addition, we would like to make the ex-
perience more collaborative. Students should be able to discuss
recommended resources, receive attribution for contribution,
and see the positive impact of their contributions on fellow
students. Besides, we are considering a range of machine-
assisted techniques for helping more efficiently manage the
quality of the resources. Lastly, a randomized trial ought to be
performed to evaluate the effect of Recommender on student
performance.

code and documentation for the
available under an open source license at

The source
system is

https://github.com/pmitros/RecommenderXBlock.

REFERENCES

[1] T Anderson, A Corbett, K Koedinger, and R Pelletier. Cognitive tutors:
Lessons learned. The Journal of the Learning Sciences, 1995.

[2] Mihaly Csikszentmihalyi.
Harper and Row, 1990.

[3] Hendrik Drachsler, Katrien Verbert, Olga C. Santos, and Nikos
Manouselis. Panorama of recommender systems to support learning.
(Pre-publication), 2014.

[4] Mojisola Erdt and Christoph Rensing. Evaluating recommender al-
gorithms for learning using crowdsourcing. Int. Conf. on Advanced
Learning Technologies, 2014.

The Psychology of Optimal Experience.

[5] D Feldon. The implications of research on expertise for curriculum and
pedagogy. Educ Psychol Rev, 2007.

[6] P Hinds, M Patterson, and J Pfeffer. Bothered by abstraction: The effect
of expertise on knowledge transfer and subsequent novice performance.
Journal of Applied Psychology, 2001.

[71 K Koedinger and V Aleven. Cognitive tutors: Lessons learned. Educ
Psychol Rev, 2007.

[8] N Manouselis, H Drachsler, K Verbert, and E Duval. Recommender
Systems for Learning. Springer, 2013.

[9] P Mitros, K Affidi, G Sussman, C Terman, J White, L Fischer, and
A Agarwal. Teaching electronic circuits online: Lessons from MITx’s
6.002x on edX. In ISCAS, pages 2763-2766. IEEE, 2013.

[10] P Mitros and F Sun. Creating educational resources at scale. /EEE
Conf. on Adv. Learning Technologies, 2014.

[11] National Research Council. How People Learn, pages 31-50. National
Academy Press, 2000.

[12] C Seeley. Faster Isn’t Smarter, pages 88-92. MSP, 2009.

[13] K VanLehn. The relative effectiveness of human tutoring, intelligent
tutoring systems, and other tutoring systems. Educational Psychologist,
46(4):197-221, 2011.

