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Abstract—Rising college tuitions are putting increasing finan-
cial pressure on families, while at the same time, teachers are
repeating tasks like grading and problem creation thousands of
times across campuses. Open educational resources (OERs) have
the promise of reducing this inefficiency, offering higher quality
education at lower cost. However, the adoption of OERs remains
limited in part due to issues with organization, quality, search,
and fit to the curriculum of individual classrooms. This paper
presents a new format for OERs based on a common course skele-
ton shared among a community of students and instructors. That
community jointly creates and improves educational resources
around that skeleton. This model resolves many of the classical
problems in finding and organizing OERs. We present ways to
use such communities to create richer educational resources, such
as intelligent tutoring systems (ITS).

I. INTRODUCTION AND PRIOR WORK

There are 4,706 degree-granting institutions in the United
States. An introductory course such as physics is taken by
over one million students annually. This gives 3-4 orders of
magnitude repetition and inefficiency on tasks such as creation
of lectures and assessments, and 6 orders of magnitude on per-
student tasks such as grading or tutoring. International numbers
are approximately an order of magnitude greater. Open educa-
tional resources (OER) and at-scale learning organizations such
as edX attempt to improve the quality of education by reducing
those inefficiencies, providing higher-quality resources, and
allowing more time for student-instructor interaction.

The OER approach has been limited in impact due to lack
of coherence. With a few exceptions, OERs are spread among
many repositories, and built on different conventions, syllabi,
and technologies. As a result, finding and adapting OERs to
specific courses is time-prohibitive for most faculty [5].

In contrast, institutional Massive Open On-line Courses
(xMOOCs) [14] use a centralized approach where an insti-
tution creates a complete, coherent course. Those courses are
used in blended classrooms across many campuses. xMOOCs
are typically taught by top instructors, and many employ
research-based pedagogies such as active learning, constructive
learning, and mastery-learning [10]. They are further enhanced
with data-driven techniques. The centralization allows for a
greater investment of resources per course than traditional
courses. Initial evidence suggests that well-designed xMOOCs
can lead to high levels of student learning and satisfaction in
both on-line and blended settings [8][10]. In contrast to OERs,
xMOOCs are traditionally not open, and do not substantially
leverage the creative input of external contributors.

In this paper, we present a hybrid model: the distributed
course. In this model, a community of students and instructors
collaborates around the creation of a common, shared course,

and uses variants of that course across many classrooms. Since
the resources are organized around a common curriculum, the
barriers to use and contribution are much lower than traditional
OERs. This model is analogous to crowdsourced models such
as Wikipedia [6] or the Linux kernel, and has analogues to the
LON-CAPA Shared Resource Pool [7]. It builds closely on
the design goals of the MITx and the Berkeley CourseSharing
platforms, both of which had a stated goal of becoming a
“github for courses,” as well as on cMOOCs[9].

We present evidence that the student experience can be
enhanced by such a model, that communities are willing to
contribute to a distributed course, explore ways to leverage
community to create rich educational experiences, and look at
potential limitations. In particular, we focus on case studies
for building point-of-need help systems.

II. PREREQUISITES FOR CROWDSOURCED CONTENT

For the distributed course to work, students and instructors
must be willing to contribute. We have data from several
experiments which show that with minimal encouragement,
a single-digit percent of students contribute. In the 6.002x
wiki, 586 students edited the wiki – roughly 2% of the active
students. Those students generated 270 articles through 4645
edits. A distribution of how those contributions were spread
among students is shown in fig. 1. The CDF of contributors is
approximately log-linear, with substantial benefit both from a
few major contributors, and from many minor contributors. In
a hinting experiment, 8% of students contributed hints. While
these are small portions of the students, this percentage still
gives hundreds of contributors per course – sufficient to create
very rich resources. In addition, qualitatively, several instruc-
tors who used MOOCs residentially expressed an interest in
contributing back to those courses.

More active contributors developed complex content, such
as problem solutions at quality levels beyond what course
staffs can create, major platform technology enhancements,
and similar. The long tail gives diversity, which allows, for
example, interventions for less common student issues.

For crowdsourced resources to be effective, the benefits
of contributed content must outweigh the costs of incon-
sistency. To begin exploring this issue, in 6.002x, Circuits
and Electronics – the first edX/MITx MOOC – 30% of the
students received a version of the main learning sequences
which mixed two styles. The main videos were created by
Agarwal, and used Khan-style tablet capture. The test group
was shown additional set of videos consisting of dialogues
between Mitros and Sussman, with camera capture of writing
on paper, sometimes supported by experiments. In many cases,
there was unintentional overlap between the Agarwal videos
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Fig. 1. A distribution of number of contributions made by students to
the 6.002x wiki. Students are sorted from highest-contributing to lowest-
contributing on the X axis. The Y axis shows the cumulative number of edits.

Consistent Inconsistent Significant

Completion Rate 5.528% 5.558% No

Grade (out of 4) 3.510 3.522 No

Rating (overall) 6.286 6.316 Yes

Rating (sequences) 6.220 6.375 Yes

TABLE I. 6.002X STUDENTS PREFERRED LEARNING SEQUENCES

WITH MIXED STYLES. THERE WAS NO STATISTICALLY SIGNIFICANT

EFFECT ON GRADES OR ON COURSE COMPLETION.

and the Mitros/Sussman videos, especially towards the end of
the course. As shown in table I, students preferred learning
sequences with additional content with mixed styles. This
experiment gives preliminary evidence that conflicting styles
may not detract from the learning experience. Whether this
extrapolates to courses with many styles remains to be seen.

III. PERSONALIZED INTERVENTIONS

Providing immediate, specific, personalized feedback to
students has been shown to significantly improve learning in
both in-person [1] and technology-enhanced instruction [15],
but is cost-prohibitive to create for thousands of university
courses. Systems provide help either before the student reaches
an answer (“How do I get started?”) or after an incorrect
answer (“What did I do wrong?”). It is easier to diagnose
a student’s misunderstanding after an attempt, so many ITS
target incorrect answers. Such systems typically have hints
for around half of student submissions [12]. Generating hints
for the remaining half is extremely expensive. Fig. 2 shows
the answer distribution to a typical numerical problem from
2.01x, an edX course in mechanical engineering. The CDF is
approximately log-linear. While the first 50% of most common
submissions can be covered with just a dozen hints, covering
the top 95% of submissions would require hundreds of hints.
To generate those hints, an expert would need to reverse-
engineer the exact error the student made from each response.

We developed a system which permits students who answer
a question incorrectly and later correctly to contribute a hint
for that wrong answer. If a hint already exists, students have
the option to either contribute a new hint, or vote on an

Fig. 2. A distribution of attempts on an exercise in mechanical engineering.
The attempts are sorted on the X axis from most popular to least popular
(submissions within 1% treated as equivalent). The Y axis shows the cumula-
tive number of submissions. Practically, the X axis shows the number of hints
needed to cover the number of submissions on the Y axis.

Make sure to use h=0.02 m, not h=0.2 m
Be carefully with units.

Check substitution of values.
units

Check your integrations for beam curvature.

Fig. 3. Five examplar hints chosen by a random number generator from the
hints contributed by 2.01x MOOC students.

existing hint. In a test problem in 2.01x, 619 students viewed
the problem. Ignoring blank and junk submissions, there were
1078 attempts of which 223 were unique (numbers binned
within 1%). Students contributed 51 hints. Virtually all hints
were high quality, as evaluated by the course staff, with the
exception of spelling and grammar errors (and one hint in
Spanish), likely due to international demographics. A random
subset is shown in fig. 3.

For help prior to answer submission, following the example
of past MOOCs [13], we provided support through an on-line
question-and-answer forums. Properly designed and managed,
the effectiveness of such a forums can be very high. In the
first run of 6.002x, 92% of questions received replies with a
median time of 12 minutes. The staff felt the quality of the
responses typically exceeded that of staff-provided help.

The primary role of the forum, however, was not for
the benefit of the student asking the question, but for future
students with the same question. The 13,000 threads formed a
rich body of crowd-sourced content addressing a majority of
the common student misconceptions, errors, and mental states.
Only a minority of students asked questions, and students were
290 times as likely to read a thread as to create one.

We are investigating ways in which expert instructors can
generate interventions for more common errors. Substantial
research suggests that captures of expert-novice interactions
may be an effective tool for addressing student misconcep-
tions [3]. We ran a series of experiments in capturing expert-
novice interactions in classrooms. We found that instructors
were comfortable using a custom interface for helping students
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where writing and audio were captured on Microsoft Surface
tablets. Preliminary experiments suggest that, if adopted across
a number of classrooms, this may be an effective way to create
a set of in-depth help resources.

IV. LIMITATIONS ON STUDENT CONTRIBUTIONS

There are limitations to novices’ ability to contribute. We
tried a range of experiments where 6.002x students would tag
content by learning objectives. Unsurprisingly [2], the quality
of the tagging on the first pass was poor enough to be useless.
Students tagged content based on superficial features, such as
“circuit with a diode,” rather than on the fundamental objec-
tives, such as “analysis of nonlinear memoryless networks”.

The original run of 6.002x included an experiment to see
how well student crowd-sourcing could be used to generate a
set of course notes, with the intention of eventually leading to
an open-access textbook. We modified our wiki to allow for
the creation, editing, and display of course-specific content
such as in-line circuit schematics. We seeded the platform
with structure as a repository for course notes, as well as
some preliminary content. Students generated very high quality
content, including course notes containing key equations, ta-
bles, summaries, derivation, and other information-at-a-glance.
However, it was unclear whether these could evolve into a
textbook – as novices, the students appeared to lack the ability
to structure the text around key abstract concepts. The text was
also not always at a level appropriate for novice learners.

This experience has parallels in peer grading. The edX plat-
form includes a system which integrates AI, peer grading, self-
assessment, and instructor grading for the grading of free-form
responses such as essays and short answers [11]. As the system
is used across increasing numbers of classrooms, grading from
many instructors and potentially students may improve the
quality of the machine learning. Experience [16] suggests that
peer grading and self assessment can be quite accurate given
a clear, well-defined rubric and instructions.

V. CONCLUSION

The distributed course offer an alternative model for cre-
ation and improvement of open educational resources. Since
the resources are organized around a curriculum, the cost of
finding resources is dramatically reduced. Placing all resources
within a common course further guarantees that the resources
follow common conventions (units, i vs j, etc.), use a common
technology, and fit to the course.

By focusing a greater number of people on a smaller
resource pool, the investment per resource can be higher. Since
the resources are used by a large number of students in a
common platform, data can be used to analyze and improve the
quality of the resources, either explicitly with techniques from
educational data mining, or implicitly, such as contributing
help based on wrong answers and questions from students.

This approach allows us to bring techniques for improving
the quality which would otherwise be prohibitively resource-
intensive. ITS can lead to substantial learning gains [15], but
require more complex content, such as hints for common stu-
dent errors, problem banks [4], and individualized pathways.
We have demonstrated that a community of students is able to
construct such resources.

While the community of contributors was small as an
percentage of participants, it was very large as an absolute
number. The quality of the effort was exceptional. Since
many of the contributors were novices, the efforts required
appropriate structural and technological support, including
clear instructions and structure, and a reasoned division of
which types of contributions come from students, instructors,
and other sources.

Even at this early stage, several of the frameworks de-
scribed allow us to provide students with experiences sur-
passing those of traditional residential education on several
axes. We were able to provide students with rich course
notes, superior homework solutions, and multiple means of
24/7 point-of-need help. The next step will be to organize a
distributed group of instructors around a course, and try to
bring in a larger set of expert contributions.
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